tudeoftheascendingnodeand?isthelongitudeofperihelion.subscriptspandndenoteplutoandneptune. meanmotionresonancebetweenneptuneandpluto(3:2).thecriticalargumentθ1=3λp?2λnplibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2x104yr. theargumentofperihelionofplutowp=θ2=?p?Ωplibratesaround90°withaperiodofabout3.8x106yr.thedominantperiodicvariationsoftheeccentricityandinclinationofplutoaresynchronizedwiththelibrationofitsargumentofperihelion.thisisanticipatedinthesecularperturbationtheoryconstructedbykozai(1962). thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp?Ωn,circulatesandtheperiodofthiscirculationisequaltotheperiodofθθ3becomeszero,i.e.thelongitudesofascendingnodesofneptuneandplutooverlap,theinclinationofplutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.whenθ3becomes180°,theinclinationofplutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.williamsbenson(1971)anticipatedthistypeofresonance,laterconfirmedbymilani,nobilicarpino(1989). anargumentθ4=?pn+3(Ωp?Ωn)libratesaround180°withalongperiod,~5.7x108yr. inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(fig.17).thisisaninterestingfactthatkinoshitanakai's(1995,1996)shorterintegrationswerenotabletodisclose. 6discussion whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.jupiterandsaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealsolarsysM.XIaPE.cOM