首页 天才基本法

天才基本法 第211节


 她把视线从面前的草稿上抽离,看向那个男孩。

    “欧拉怎么可能错!”另一个人反驳。

    “我觉得一定可以有一次性走通的可能!”

    “那你可以找找,如果你找到‘不走回头路’的那条,就找到了反例,找到反例就可以证明欧拉是错的。”另一个很有条理的小女生说道。

    教室里充斥着这些声音,闹哄哄的,却让人觉得格外宁静,林朝夕没有去阻止他们的争论。

    她翻过一页纸,看到几行证明。

    脑海中的回忆和眼前的稿纸渐渐重叠,耳畔小朋友们的声音静了下来。

    ——找到了反例。

    就是这里。

    ——

    根本等不到下课,林朝夕按捺不住心中的激动,直接抽起稿纸冲到老林办公室。

    她推开门,把纸拍在桌上,手上还拿着刚给小朋友们批改作业的红笔,笔尖向下,将其中几行证明完全圈了起来,随后推到老林面前,说:“这里有问题!”

    林朝夕心跳得非常快,她凝视着父亲短暂惊诧的面容,随后退了半步:“我回去上课了!”

    她很清楚她刚才的举动有多么夸张,现在简直想夺门而逃。可还没走到门口,她就被叫住。

    “等等。”老林顿了顿,“向后转,过来,坐好。”

    林朝夕扒着门口,内心绝望,却不得不慢慢转身。

    老林包括办公室里的裴之都根本没空理她,他们的表情非常一致。在短暂惊诧后,他们露出敛眉深思的神情,认真看她圈出来的这些内容。

    林朝夕毕恭毕敬坐在旁边,大气不敢出。

    当时老林认识到自己证明有误,是因为假设出现问题,他在证明映射诱导某自同构是g(p )后,直接将s 认定为其子集。

    她当时强行记住了c→c、aibj→b等等之类的关键符号,却并没有完全理解为什么这一假设出现问题。并且因为反复做的那些证明中充斥着这些符号而没有认出这点来,直到小朋友说“反例”。

    是啊,本质还是反例。当数学家试图证明某命题遇到困难时,他们会开始寻找反例,来证明其非真。但他们又很容易在自己日常工作中,忘记它。

    老林办公室外的香樟树不会泛黄,秋天依旧苍翠,林朝夕深深吸了口气,听到他说:“你是对的,这里错了。”

    他神情中不可避免带着失落、遗憾,有些凝重,但又释然。承认错误意味着那堵墙出现了,他之前所有努力付诸东流,一切假设必须完全推翻,对任何一个努力许久的人来说,这都显得极其残忍。

    林朝夕抿了抿唇,一时间不知该如何让老林重拾信心,再在此基础上发现那个全新算法。

    “你是怎么发现的?”老林打断她的思考。

    “啊?刚才小朋友突然大喊了一声‘反例’,我就在想,你这样假设的话,你是不是并没有考虑到空集?

    她瞎扯了一个理由,实际问题并没有那么简单,不可能由她一个高中生发现,更和空集八竿子打不着。但她还是观察着老林,希望自己突然的理由可以蒙混过关。

    “有点扯犊子。”老林总结。

    “!!!”林朝夕顿时心虚,她强行辩驳,“真的是这样。”

    “你应该说:是数学之神突然眷顾了我。”老林缓缓开口。

    “数学之神突然眷顾了我?”

    “嗯。”老林神情轻松平淡,带了点笑意看着她圈出的那块,“也突然眷顾了我。”

    第191章 张耀

    老林恢复得很快, 像是发现错误这件事对他来m.xiAPE.COM
加入书签 我的书架
上页 天才基本法下页